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ABSTRACT

Open|SpeedShop (O|SS) is a comprehensive, open source, parallel performance
analysis tool set that provides the most common performance analysis steps in a sin-
gle environment. It can help application programmers to analyze, understand and
optimize the performance of their codes. O|SS provides a wide range of performance
experiments covering both sampling and tracing techniques. It works on sequential,
MPI, and multithreaded codes without requiring source code modifications. The latter
allows users an easy integration of O|SS into their application’s workflow and runtime
environment. This ensures a low learning curve and is essential for achieving a wide
spread adoption of any performance tool set. O|SS, together with documentation and
extensive tutorials, is available at http://www.openspeedshop.org/.

INTRODUCTION

Performance analysis and optimization is a critical step in the development pro-
cess of any scientific application. Efficient and easy-to-use tool support is essential
to allow users to complete this task, yet current tools are often targeted for the per-
formance analysis expert, and therefore cumbersome to use or require changes to the
compilation or execution process. This makes these tools unattractive for application
developers who often have limited time allocated for performance optimizations.

To overcome these problems, we have designed Open|SpeedShop (O|SS), an open
source multi platform Linux performance tool that provides easy access to an applica-
tion’s performance profile, while not precluding more sophisticated and detailed anal-
ysis found in other tools. For this purpose it combines guided performance analysis
through graphical wizards and preconfigured detailed analysis panels with low-level
access to performance data through scripting interfaces and Python integration.

O|SS’s performance analysis functionality includes a set of specific Experiments
that allow the user to easily gather a variety of different performance statistics about
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an application. This includes Program Counter (PC) sampling, a light weight way to
get an overview of application performance bottlenecks; Call Stack Sampling anal-
ysis, a technique to find hot call paths; Hardware Performance Counters, providing
access to low level information such as cache or TLB misses; MPI Profiling and
Tracing, enabling users to detect MPI communication bottlenecks; I/O Profiling and
Tracing to study an application’s I/O characteristics; and Floating Point Exception
(FPE) analysis to detect floating point exceptions that can slow down applications.

The tool set currently targets Linux clusters built using Intel or AMD processors
and works on a wide variety of Linux distributions. It offers two methods for instru-
mentation and data collection: an offline option that instruments the application at
job start, produces unprocessed raw files at runtime, and then automatically postpro-
cesses these files for later analysis; and an online option that dynamically instruments
the application at runtime and collects the data using a hierarchical overlay network.
While the first option typically is easier to install and allows for less instrumentation
overhead, the second option provides advanced scalability as well as new function-
ality like being able to attach to already running applications. In both cases, though,
the data is stored in the form of a single relational database.

Once collected, O|SS displays the data through a set of detailed reports that allow
the user to easily relate the performance information back to their application source
code. This information is accessible through a comprehensive GUI, from a command
line interface, as well as from within Python scripts. Additionally, the tool set in-
cludes a series of analysis techniques, including outlier detection, load balance anal-
ysis, and cross experiment comparisons. In summary, O|SS’s functionality provides
a comprehensive set of techniques that greatly aid in the analysis and understanding
of parallel application performance.

The remainder of this paper is structured as follows: Section 3 describes the cen-
tral concept for the use of O|SS, an Experiment. Section 4 illustrates O|SS’s user
interfaces and workflow, followed by a description of its architecture in Section 5
and a discussion of the two instrumentation options in Section 6. Section 7 shows
the overheads caused by O|SS and Section 8 provides a quick overview of related
work. We then conclude with a brief look into O|SS’s future and some final remarks
in Section 9.

THE CONCEPT OF EXPERIMENTS

The central concept in O|SS’s workflow is an Experiment. It defines what is
being measured and/or analyzed. Users select their experiment at the beginning of
any performance analysis run depending on what kind of performance bottleneck
they would like to investigate. With that, they implicitly choose how the data will
be extracted from the application, in which form it will be stored, and what kind of
views are available for its analysis.

By default, the tool set offers three sampling and three tracing experiments cov-
ering most common needs for performance analysis. These are

• PC Sampling, which provides a statistical overview of where a code spends its
time and hence offers a good first overview of a code’s behavior;

• User Time, which adds stack trace information to the gathered samples and
thereby adds context on how a code reached the observed bottlenecks;



• HardWare Counter (HWC), which enables users to measure information of-
fered by the CPU’s performance counters like cache or TLB misses;

• I/O tracing, which gathers a detailed trace of all POSIX I/O operations found
in a code and the time they took;

• MPI tracing, which provides the same type of information, but for MPI calls
executed during an applications execution; and

• FPE tracing, which tracks floating point exceptions triggered by the FPU.

Most of these experiments exist in several variants that allow the user to further
define which/how much information is being collected. For example, the hardware
counter experiment can optionally collect stack traces for each sample, which enables
the user to distinguish different invocation contexts. Further, both the I/O and the MPI
tracing experiments have the ability to include function arguments (such as number of
bytes written during an I/O command or source rank for an MPI receive operation) in
the traces. Finally, the MPI tracing experiment also enables the storage of MPI traces
in the Open Trace Format (OTF) [9] for additional analysis in timeline visualization
tools like Vampir [14].

Except for the MPI tracing experiments, which naturally requires parallel execu-
tion in an MPI environment, all other experiment can be used in either sequential or
parallel (MPI or multithreaded) environments. In the latter case, O|SS keeps track
of which performance information was generated by which process or thread and
then offers the data either in an aggregated (global) view or on a per task/thread or
task/thread group basis.

In addition to the existing default experiments, O|SS allows the addition of new
experiments through a plugin infrastructure. By specifying separate plugins for data
collection, data preparation, and data presentation programmers can add new tool
functionality without having to reimplement the (often complex) surrounding infras-
tructure. This includes components like instrumentation, data conversion, transport,
and storage, and user interfaces. This capability allows O|SS to be extensible and also
meet specialized needs, e.g., for particular hardware platforms with special needs or
performance monitoring capabilities.

USER INTERFACES AND WORKFLOW

O|SS offers three different user interface, which are shown in Figure 1: a Graph-
ical User Interface (GUI) with source code browser and simple graphing and visu-
alization panels; a specialized scripting language similar to ones used by debuggers
like gdb, called Command Line Interface (CLI); and a Python module (pyO|SS) that
allows the invocation of O|SS from Python scripts. Additionally, O|SS’s default in-
stallation provides a set of convenience scripts that provide single command access
to O|SS experiments without having to learn any command syntax or scripting lan-
guages.

It is important to note that all user interfaces are equivalent in their functionality
and capabilities and can interact. Data gathered using one interface can be read and
analyzed by any other. This full interoperability is made possible through O|SS’s user
interface architecture, which is shown in the top part of the graphics in Figure 2. All
user interfaces are layered on top of a single user interface access component, which



Experiment Commands 
   expAttach 
   expCreate 
   expDetach 
   expGo 
   expView 

List Commands 
   list –v exp 
   list –v hosts 
   list –v src 

Session Commands 
   setBreak 
   openGui 

import openss  

my_filename=openss.FileList("myprog.a.out") 
my_exptype=openss.ExpTypeList("pcsamp") 
my_id=openss.expCreate(my_filename,my_exptype) 

openss.expGo() 

My_metric_list = openss.MetricList("exclusive") 
my_viewtype = openss.ViewTypeList("pcsamp”) 
result = openss.expView(my_id,my_viewtype,my_metric_list) 

Figure 1. Open|SpeedShop provides three interoperable user interfaces.
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Figure 2. Open|SpeedShop framework and its open source components.



Figure 3. Typical Workflow in O|SS.

is integrated with the CLI. This component provides central access to the actual per-
formance analysis framework. Any command from any user interface is translated
into the equivalent command line command and passed to the CLI parser for process-
ing. Similarly, any result return by a command is sent through the CLI and passed
back to user interface from where the command originated.

This unique architecture not only ensures the full interoperability of all user inter-
faces, but also provides the additional benefit that commands in any user interface can
be recorded into a script and later replayed through O|SS’s batch interface. In partic-
ular, users can execute an experiment through the GUI, later recall the commands that
were used by the GUI to run the selected experiment, and use them to automatically
repeat the manually executed experiment. This significantly lowers the learning curve
for O|SS’s scripting language and enables even untrained users to create repeatable
batch experiments.

Independent of which interface is used, users of O|SS generally follow the same
workflow, which is depicted in Figure 3: they first select their target application, the
experiment, as well as the data collection mechanism. O|SS then loads the application
or attaches to it, instruments it with the necessary performance probes, and runs the
application. Depending on the collection mechanism, the performance data is either
stored in temporary files and converted after the run’s completion, or is directly stored
in an SQL database. Once the application terminates or the user polls for intermediate
data in the online mode, O|SS reads the collected data from the database and then
displays it to the user or performs additional analysis on it. The latter includes cross
experiment comparisons, multi rank analysis, or clustering techniques. In any case,
the user can use this to gather information about his/her application and then apply
this information to either initiate a next set of experiments or to modify the code.

THE ARCHITECTURE OF THE O|SS FRAMEWORK

The O|SS framework, as shown in Figure 2, consists of several layers, each raising
the abstraction of the performance data. Collectors are inserted into an application by
the O|SS Instrumentor component using one of two instrumentation options. These



are described in more detail in the following section. Any collected data is passed
through a base tool layer, which preprocesses the raw data from the collectors to a
common format, to the data abstraction layer, which is responsible for storing the data
in the SQLite database. When data is requested by a user through the user interface
access module, the data abstraction layer is further responsible for querying the data
from the database and for preparing it for display. The latter includes any necessary
data aggregation, e.g., the generate sums or average of data from multiple MPI ranks.

Experiments are implemented as a set of plugins that define what data is col-
lected (Collector Plugin), how it is presented to the user (View Plugin), and how it is
displayed in the GUI (Panel Plugin). Additionally, an optional (Wizard Plugin) can
extend the GUI to help guide users through the setup of that particular experiments
All plugins are loaded by O|SS during startup and provide the actual tool functional-
ity. This plugin concept can also be used to extend O|SS easily with new experiments,
while inheriting all benefits from the O|SS framework.

O|SS relies on several open source infrastructures and the most important ones
are shown on the right side of Figure 2. The user interface access component uses
the Python parser for the processing of CLI commands. As a consequence of this
design, the CLI can not only process its own commands, but any command can also
be augmented by Python control flow commands, including conditionals and loop
structures, which significantly increases the flexibility of the CLI language.

We use the open source database SQLite to store any performance data in the form
of a relational database. We chose this particular database implementation, since it
stores each database as a separate file, which allows us to provide an easy-to-use
standalone tool. However, the interface within O|SS solely relies on SQL commands
to access the database and hence other database implementations could be substitute
SQLite without a major redesign.

All GUI components are written using the open source version of QT. This also
includes any panel or wizard plugins. However, O|SS can also be built in CLI mode
only, which drops the dependence on QT.

INSTRUMENTATION AND DATA COLLECTION OPTIONS

As mentioned above, O|SS currently provides two different mechanisms to intro-
duce performance instrumentation into application binaries (Figure 4): Offline instru-
mentation at link time and Online or dynamic instrumentation in combination with a
tree-based aggregation network based on MRNet [15].

Using the Offline variant, the data collector is loaded into the application at link
time using library preload and function interception mechanisms. Any data is written
to raw files, which are aggregated post-mortem and at that point translated into a
single O|SS database, which can then be analyzed in the O|SS tool set.

The Online instrumentation uses dynamic instrumentation (provided by Dyninst [3])
to insert the data collection directly into the already loaded and running binary. Any
collected data is transferred using a tree-based overlay network, implemented using
MRNet, to the front-end tool and stored into an O|SS database. Additionally, it can
also be displayed as it comes available allowing the user to monitor progress and to
study intermediate results.

Both instrumentation options can operate on unmodified binaries and both offer
the same kind of data to the user. However, they represent different tradeoffs in
terms of flexibility and performance. Offline instrumentation is typically more robust
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Figure 4. O|SS instrumentation options: Offline vs. MRNet.

and easier to deploy, in particular on new platforms. In most cases it also offers
slightly lower overhead. However, it is restricted to end-to-end measurements, i.e., it
must be enabled during the entire run of an application and results are not available
before the application has terminated. The dynamic instrumentation in the MRNet-
based approach, on the other hand, enables O|SS to attach performance experiments
to already running applications and provides the ability to query intermediate results
during the application’s runtime. Additionally, this online approach eliminates the
need to created intermediate raw data files. However, it comes at the cost of additional
installation complexity and overhead.

Users can select the instrumentation technique based on their preferences and
environment. Typically, it is recommended to use the simpler offline instrumentor
when possible, i.e., if it is not necessary to attach to a running application, due to its
lower overhead and higher robustness.

SCALABILITY AND OVERHEAD

Performance tools need to be designed to exhibit minimal overhead, in order to
not perturb the execution of the application to a point that it significantly alters the ap-
plication’s characteristics. Otherwise, the results obtained from the tool do not reflect
the real performance of the application and hence can lead to wrong conclusions.

To study the overhead caused by O|SS we apply it to a set of runs with SMG2000,
a Semicoarsening Multigrid Solver based on the hypre library [4], taken from the
ASCI Purple benchmark suite [7]. We use an input size N = 903 for all experiments
and we execute them on Hyperion [8], a 1152 node Linux cluster. Each node is
equipped with dual socket Intel Xeon Quad-core processors and 8GB of main mem-
ory, interconnected with Quad data rate Infiniband.

We investigate the performance of both sampling and tracing experiments and
Figure I shows the results of four different experiments comparing the execution of
the code with O|SS to a baseline without instrumentation. Sampling experiments are
expected to produce a uniform overhead across the whole application. For O|SS we
see an only negligible overhead of 0.3%-0.6% for the PC sampling and the hardware



Tasks Nodes PCsamp HWC IO IOT
64 8 0.3% 0.2% 0.0% 1.5%
128 16 0.3% 0.3% 0.0% 0.0%
256 32 0.4% 0.4% 0.0% 0.3%
512 64 0.5% 0.6% 0.1% 2.4%

1024 128 0.4% 0.4% - -
TABLE I. OVERHEADS WHEN EXECUTING O|SS ON SMG2000 USING A VARIETY OF
EXPERIMENTS.

counter (HWC) experiments. Further, our tool framework scales well showing only a
slight increase in overhead when scaling the application run from 64 to 1024 tasks.

The performance of tracing experiments, on the other hand, depends heavily on
the activity within the application that is being traced. Typically, tracing experiments
capture large amounts of data and are expected to create significant overhead. The
results in Figure I show the performance of the I/O tracer with and without stack
tracer enabled. SMG2000 does only minimal I/O and hence the numbers reflect the
overhead required by O|SS to setup the experiment and prepare the trace information,
but not the actual recording of trace data. Again, we see a very low overhead and a
good scalability in all cases, but using stacktraces can in some cases created a slightly
higher overhead of 2.5%.

RELATED WORK

Typically, operating systems already provide a set of basic performance tools.
This often includes prof or gprof, a basic profiler, and utilities like time to measure
execution time or strace to track all system calls.

Besides them, a large body of research exists covering a wide range of perfor-
mance tools. Examples are HPCView from the HPCToolkit [10], which provides a
graphical user interface to gather a detailed performance profile of an application on a
per function basis; the PAPI [13] utilities or the HPM Tool Kit [5] to gather hardware
counter statistics across an application’s execution; the Visual Profiler (vProf) [6];
and DynTG [16], which allows users to dynamically insert performance calipers into
a running application.

Further, several tools have been developed specifically for the analysis of paral-
lel applications. This includes both profiling tools, like mpiP [17], and tracing and
trace visualization tools, like Vampir [14], Vampir Next Generation (VNG) [2], or
Jumpshot [19]. SCALASCA [18] and its predecessor Kojak [12] work on both pro-
files and traces and offer an automated analysis of traces to identify communication
bottlenecks. Systems like TAU/ParaProf [1], which provides a whole suite of perfor-
mance tools and visualizers, and Paradyn [11], which focuses on the use of dynamic
instrumentation, can be used both on sequential and parallel codes.

CONCLUSIONS AND FUTURE WORK

O|SS is an open-source performance analysis tool set for Linux clusters. It pro-
vides a range of experiments for sampling and tracing of performance data for se-
quential, MPI parallel, and multithreaded codes. Users can access the tool through



three separate, yet fully interoperable interfaces. O|SS can be applied to existing bina-
ries without requiring any changes to source code or recompilation and can hence be
applied easily to any application. Using a case study of a multigrid solver, we have
shown that the overheads caused by the tool are negligible and that the framework
supporting O|SS is scalable. Future work includes porting O|SS to new platforms,
including machines like BG/L, BG/P, and Cray’s XT line, as well as further scala-
bility enhancements. This will develop O|SS into a true cross-platform performance
analysis tool set that can be applied by end users at any step of their code develop-
ment efforts, be it on commodity clusters, small test configurations, or production
environments on high-end systems.
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